Girsanov and MLE
An application of Girsanov theorem in parameter estimation.
Maximum likelihood estimation
Given $N$ independent observations, the likelihood function given $\mathrm{\theta=(\mu, \sigma)}$ follows that
\[\begin{align} \mathrm{L(\{x_i\}_{i=1}^N|\theta)=\prod_{i=1}^N f(x_i|\theta)},\notag \end{align}\]which models the density of the random variable $X$. The maximum likelihood estimator (MLE) is given by
\[\begin{align} \mathrm{\widehat\theta=\text{argmax} L(\mathbf{x}|\theta)},\notag \end{align}\]where $\mathrm{\mathbf{x}=\{x_i\}_{i=1}^N}$. When $X$ is a Gaussian random variable that follows $\mathrm{X\sim \mathcal{N}(\mu, \sigma^2)}$. The likelihood function is expressed as
\[\begin{align}\label{MLE} \mathrm{L(\{x_i\}_{i=1}^N|\theta)=\bigg(\frac{1}{\sqrt{2\pi \sigma^2}}\bigg)^{N/2} \exp\bigg(-\frac{\sum_{i=1}^N (x_i-\mu)^2}{2\sigma^2}\bigg)}. \end{align}\]Taking the gradient w.r.t. $\mu$ and $\sigma^2$, we have
\[\begin{align} \mathrm{\widehat \mu=\frac{1}{N}\sum_{i=1}^N x_i, \quad \widehat\sigma^2=\frac{1}{N} \sum_{i=1}^N (x_i-\widehat \mu)^2}.\notag \end{align}\]Girsanov theorem
Assume we have a diffusion process
\[\begin{align} \mathrm{\mathrm{d}X_t = b(X_t;\theta)\mathrm{d}t+\sigma\mathrm{d}W_t}.\notag \end{align}\]We observe the whole path of the process $\mathrm{X_t}$ from time $\mathrm{[0, T]}$. Denote by $\mathrm{\mathbb{P}_X}$ the law of the process on the path space, which is absolutely continuous w.r.t. the Wiener measure. The density of $\mathrm{\mathbb{P}_X}$ w.r.t. the Wiener measure is determined by the Radon-Nikodym derivative
\[\begin{align}\label{girsanov} \mathrm{\frac{\mathrm{d}\mathbb{P}_X}{\mathrm{d}\mathbb{P}_W}=\exp\bigg(\frac{1}{\sigma}\int_0^T b(X_s; \theta)\mathrm{d}W_s-\int_0^T \frac{b^2(X_s;\theta)}{2\sigma^2}\mathrm{d}s \bigg)}. \end{align}\]We can observe a close connection between Eq.\eqref{MLE} and a discrete variant of Eq.\eqref{girsanov}
Remark: While the Girsanov theorem is commonly employed, it is prone to mistakes. Please see comments in (Chewi, 2024).
Applications
Given a stationary Ornstein-Uhlenbeck process, how do you estimate the parameters using MLE (Pavliotis, 2014)..
\[\begin{align} \mathrm{\mathrm{d}X_t = -\alpha X_t \mathrm{d}t+\sigma\mathrm{d}W_t.}\notag \end{align}\]Hint: 1) write the likelihood; 2) take the gradient.
- Chewi, S. (2024). Log-Concave Sampling.
- Pavliotis, G. A. (2014). Stochastic Processes and Applications: Diffusion Processes, the Fokker-Planck and Langevin Equations. Texts in Applied Mathematics.